行星齒輪除了能像定軸齒輪那樣圍繞著自己的轉動軸(B-B)轉動之外,它們的轉動軸還隨著藍色的支架(稱為行星架)繞其它齒輪的軸線(A-A)轉動。繞自己軸線的轉動稱為“自轉”,繞其它齒輪軸線的轉動稱為“公轉”,就象太陽系中的行星那樣,因此得名。
被我們所熟知的齒輪絕大部分都是轉動軸線固定的齒輪。例如機械式鐘表,上面所有的齒輪盡管都在做轉動,但是它們的轉動中心(與圓心位置重合)往往通過軸承安裝在機殼上,因此,它們的轉動軸都是相對機殼固定的,因而也被稱為"定軸齒輪"。
軸齒輪那樣圍繞著自己的轉動軸(B-B)轉動之外,它們的轉動軸還隨著藍色的支架(稱為行星架)繞其它齒輪的軸線(A-A)轉動。繞自己軸線的轉動稱為“自轉”,繞其它齒輪軸線的轉動稱為"公轉",就象太陽系中的行星那樣,因此得名。
也如太陽系一樣,成為行星齒輪公轉中心的那些軸線固定的齒輪被稱為"太陽輪",如圖中紅色的齒輪。 在一個行星齒輪上、或者在兩個互相固連的行星齒輪上通常有兩個嚙合點,分別與兩個太陽輪發(fā)生關系。如右圖中,灰色的內齒輪軸線與紅色的外齒輪軸線重合,也是太陽輪。
軸線固定的齒輪傳動原理很簡單,在一對互相嚙合的齒輪中,有一個齒輪作為主動輪,動力從它那里輸入,另一個齒輪作為從動輪,動力從它輸出。也有的齒輪僅作為中轉站,一邊與主動輪嚙合,另一邊與從動輪嚙合,動力從它那里通過,這種齒輪叫惰輪。
在包含行星齒輪的齒輪系統(tǒng)中,情形就不同了。由于存在行星架,也就是說,可以有三條轉動軸允許動力輸入/輸出,還可以用離合器或制動器之類的手段,在需要的時候限制其中一條軸的轉動,剩下兩條軸進行傳動,這樣一來,互相嚙合的齒輪之間的關系就可以有多種組合:
動力從太陽輪輸入,從外齒圈輸出,行星架通過機構鎖死;
動力從太陽輪輸入,從行星架輸出,外齒圈鎖死;
動力從行星架輸入,從太陽輪輸出,外齒圈鎖死;
動力從行星架輸入,從外齒圈輸出,太陽輪鎖死;
動力從外齒圈輸入,從行星架輸出,太陽輪鎖死;
動力從外齒圈輸入,從太陽輪輸出,行星架鎖死;
兩股動力分別從太陽輪和外齒圈輸入,合成后從行星架輸出;
我們知道,汽車發(fā)動機只有一個,而車輪有四個。發(fā)動機的轉速扭矩等特性與路面行駛需求大相徑庭。要把發(fā)動機的功率適當?shù)胤峙涞津寗虞?,可以利用行星齒輪的上述特性。如自動變速器,也是利用行星齒輪的這些特性,通過離合器和制動器改變各個構件的相對運動關系而獲得不同的傳動比。
行星齒輪傳動的主要特點是體積小,承載能力大,工作平穩(wěn)。但大功率高速行星齒輪傳動結構較復雜,要求制造精度高。行星齒輪傳動中有些類型效率高,但傳動比不大。另一些類型則傳動比可以很大,但效率較低。用它們作減速器時,其效率隨傳動比的增大而減??;作增速器時則有可能產(chǎn)生自鎖。
行星齒輪系在各種機械中得到了廣泛的應用。
1.實現(xiàn)大傳動比的減速傳動
行星齒輪系中,若各輪的齒數(shù)分別為z1=100,z2=101,z2’=100,z3=99,則輸入構件H對輸出構件1的傳動比 =10000??梢姡鶕?jù)需要行星齒輪系可獲得很大的傳動比。
2. 實現(xiàn)結構緊湊的大功率傳動
行星齒輪系可以采用幾個均勻分布的行星輪同時傳遞運動和動力。這些行星輪因公轉而產(chǎn)生的離心慣性力和齒廓間反作用力的徑向分力可互相平衡,故主軸受力小,傳遞功率大。另外由于它采用內嚙合齒輪,充分利用了傳動的空間,且輸入輸出軸在一條直線上,所以整個輪系的空間尺寸要比相同條件下的普通定軸齒輪系小得多。這種輪系特別適合于飛行器。
3.實現(xiàn)運動的合成
運動的合成是將兩個輸入運動合為一個輸出運動。差動輪系的自由度等于2,當給定任意兩個構件的確定運動后,另一構件的運動才能確定。利用差動輪系的這一特點可以實現(xiàn)運動的合成。
行星架H的轉速是輪1與輪3轉速的合成。因此這種輪系可用作加法機構。當行星架H、太陽輪1或3為原動件時,該輪系又可用作減法機構。
差動輪系可進行運動合成的這種特性被廣泛應用于機床、計算機構及補償調整裝置中。
4.實現(xiàn)運動的分解
差動輪系還可以將一個原動構件的轉動分解為另外兩個從動基本構件的不同轉動。